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TABLE 7.1: Apparent Mn?* distribution coefficients (M ”K;) calculated from the solid

phase and the solute concentrations in the three experiments. The parameters used for
the calculations are listed in the Table. All parameters were rounded to 2 significant
digits after calculation.

Parameter Sign (units) | EXP 3 | EXP 2 EXP 4
Inflow Mn?*t concentration Low Moderate | High
Apparent distribution Mn

coefficient of Mn?* Ky o 93 76
Steady state concentration of _

the solid phase Mn(II) Stotat (g - kg™") | 17 27 13
Solute concentration in outflow 1

solution at equilibrium Cout (mg - L71) 0.65 10 24
Bulk density b (g . mL‘l) 1.5 1.5 1.5
Porosity € 0.42 0.42 0.36
Steady state concentration of _

the solid phase Mn(IT) Gotal (g - L77) 5 95 180

7.4.2 Flow velocity and Mn?* mobilization

One of the experiments (EXP 10) was conducted with varying flow velocity in order to
evaluate the effect of the rate of transport on the Mn?* controlling processes (Fig. 7.2,
Appendix 12). After attainment of steady state (Fig. 7.1), the flow velocity was lowered
by a factor of 5 in 2 gradual steps (from 4 mL-h~! to 0.8 mL-h~!); Later, the flow was
increased by a factor of 4 in 4 gradual steps (from 4 ml-h~! to 14.3 ml-h~!); the flow
was stopped for 4.5 days between step 3 and step 4 (Fig. 7.2A). During the initial stage
of EXP 10 (stage I) Mn?* (Fig. 7.2C) and Ca?* (Fig. 7.2B) concentrations stabilized on
their steady state concentrations (lower and higher than their inflow concentrations due
to rhodochrosite precipitation and carbonate dissolution, respectively). During the rest
of the experiment Ca?t only varied slightly whereas Mn?* changed substantially. During
the low flow velocity stage (stage II) Mn?* decreased while in the high flow velocity
stage (stage III) it increased up to the inflow concentration. These results suggest that
MnCO; precipitation in the column is a very slow process. This is corroborated by the
significant decrease in Mn?* concentration that followed the 4.5 days of zero flow at the

end of stage III. As expected, during this time Ca?* concentration increased towards its
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thermodynamic equilibrium value. It should be noted that at stage IV, which followed

the zero flow period, the trends of Ca?* and Mn?* remained as before.

In summary, EXP 10 proves that a solid Mn phase (MnCO;) precipitated in the exper-

imental column and that the rate of this reaction is slow.
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FIGURE 7.2: Flow velocity (A), Ca?* concentration (B), and Mn?* concentration (C)

versus number of pore volumes in EXP 10. At 126 pore volumes, after attaining steady

state (stage I) the flow velocity decreased in 2 steps to 0.8 ml-h~! (stage II), followed

by an increase in 4 steps to 14.3 ml- h~! (stage III). During the increaes, between step
3 and step 4, the flow was stopped for 4.5 days (marked by the circles).

7.5 Analytical model

Analytical solutions for the Mn?* breakthrough curves in the experiments are presented
in Figs. 7.3 - 7.6. The model is presented in Eq. 7.4 and the parameters used for

the calculations are listed in Table 7.2. This model, however, assumes instantaneous
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adsorption, a constant M"K;, and does not include rhodochrosite precipitation. The
Mn e, values were varied between the simulation runs to obtain the best fit with the
observed Mn?* breakthrough curve (Figs. 7.3 - 7.6). The " K values that best fit the

data are listed in Table 7.2
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FIGURE 7.3: Experimental data showing the Mn?* breakthrough for the low concen-

tration experiment’ (EXP-3). Simulations of the breakthrough curves calculated by

the analytical model (Eq. 7.4) for different values of ¥" K, (marked by the arrows) are

represented by the solid lines. The line for " K;=95 (solid green line) represents the
best fit with the experimental data.
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FIGURE 7.4: Experimental data showing the Mn?t breakthrough for the 'moderate

concentration experiment’ (EXP-2). Simulations of the breakthrough curves calculated

by the analytical model (Eq. 7.4) for different values of " K, (marked by the arrows)

are represented by the solid lines. The line for ¥" K ;=75 (solid blue line) represents
the best fit with the experimental data.
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FIGURE 7.5: Experimental data showing the Mn?* breakthrough for the ’high con-

centration experiment’ (EXP-4). Simulations of the breakthrough curves calculated by

the analytical model (Eq. 7.4) for different values of " K, (marked by the arrows) are

represented by the solid lines. The line for ™" K ;=65 (solid red line) represents the
best fit with the experimental data.
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FIGURE 7.6: Comparison of the three Mn?* column experiments shown in Figs.
7.3-7.5 showing that the ™K, obtained from the best fit of the analytical break-
through curves decreases with increasing Mn?* inflow concentrations.

The good correlation between the experimental data and the model results indicates that
advection, dispersion and adsorption are the main processes controlling Mn?* mobiliza-
tion. It should be noted however that while the simulated Mn?* attains the exact Mn?*
inflow concentrations in all experiments, in two of the experiments (EXP 2 and EXP

4), the actual data stabilizes on lower Mn?* concentrations. The two experiments were
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those with moderate Mn?*and high Mn?* inflow concentrations (Fig. 7.6). The dis-
crepancy between the calculated and the observed results may stem from precipitation
of MnCO4 within the experimental column, which is not accounted for in the analytical
model. Adding a MnCO; precipitation term to the numerical model presented below

(section 7.6), successfully resolves this discrepancy.

The results of the analytical model indicate that the higher the Mn?* inflow concen-
tration, the lower the M"K, in agreement with the apparent distribution coefficient
calculated from the Mn mass-balance for the experimental data (section 7.4.1). The
values of M"; obtained in both calculations are very similar for the “low Mn?* concen-
tration experiment’ (EXP 3). In the other two experiments the ”K;l values calculated
from the Mn mass-balance for the experimental data were higher than MK, values
calculated by the analytical model. This indicates that the solid phase Mn(II) used
in the mass-balance calculations contained also MnCO; that was precipitated during

the experiments and not only adsorbed Mn(II). The amount of MnCOs,, , that

an003
precipitated in the column was calculated using Eq. 7.26, from the apparent M”K;l
values calculated from the Mn mass-balance and the real " K values calculated by the
analytical model. The obtained q,, . 03 values are 18.4 and 26.6 mg- L~! in EXP 2 and
EXP 4, respectively. This means that MnCO; precipitation accounts for a deficit of ca.
1/5 of the total Mn removed by the experimental column from the beginning up to the

establishment of steady state outflow concentration (while 4/5 of the Mn was removed

by adsorption on aquifer sediments).
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TABLE 7.2: Descriptions, symbols, units and values of parameters used in the simu-
lations with the analytical model (Ana in column 3) and the numerical model (Num
in column 3). The detailed explanation of the numerical model is given in section 7.6

below.
Parameter Sign (units) Model EXP 3 EXP 2 EXP 4
Imtla.l concentration Co (meq ) L‘l) Anat+Num 0 0 0
in column
_ Concentration of | (00 1-1) | Ana+Num 0.024 0.046 0.097
introducing solution
Flow velocity v(em-h™h) Ana+Num 5.2 4.2 5.1
Dispersivity a(em) Ana+Num 0.8 ¢ 0.8 ¢ 0.8 ¢
Dispersion 2 41
coefficient (D = a - v) D (cm h ) Ana+Num 4.2 3.4 4.1
Distribution Mr g, Ana+Num 95 75 65
coefficient
. . Ana 10 10 10
Time increment At () Num 0.005 0.005 0.005
Distance increment Az (cm) Num 0.5 0.5 0.5
Adsorption rate ka (1) Num 10 200 200
coefficient
MnCO, precipitation 1
rate coefficient kp (h™1) Num 0.05 0.05 0.03
Alkalinity ALK (eq- L") Num 0.005 0.005 0.005
pH pH Num 6.8 6.8 6.8
MnCO, apparent ' ! ~11 b —11 %
solubility product K.y Num 2.24-10 2.24-10 2.24-10
Equilibrium constant K, Num 10—10:25 ¢ 101025 ¢ 101025 ¢

between HCO5 and
Cco3~

® value taken from similar experiments made by Russak et al.,2008 (personal communication).
¥ from Lide, 1991, p. 8-43.

¢ from Stumm and Morgan, 1981, p. 176.
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7.5.1 Mn?" sorption isotherm on aquifer rocks

A sorption isotherm describes the distribution of a substance between a solid phase
and the aqueous phase that is in contact with that solid. It is used for describing and
predicting mobilization by groundwater of substances with affinity to the solid phase
(Limousin et al., 2007). The simplest description of the distribution of a parameter
between the solid and the aqueous phases is the linear sorption isotherm: ¢ = Ky - C
(where ¢ = Qudsorbed @and C are the adsorbed and dissolved concentrations, respectively,
and K, is the distribution coefficient). A linear isotherm means that K is constant or
that the solid saturation concentration may reach infinity. Such a model is generally
used for describing the behavior of trace components (Appelo and Postma, 1996). The
more general case is when the concentration of a particular component in the solid
phase is limited by saturation (Limousin et al., 2007). In this case, q is not a linear
function of C but has a convex shape (q approaches the saturation concentration) and
the distribution coefficient (K4 = ¢/C) decreases as a function of solute concentration.
Indeed, the shape of a q,,, versus Cjsy, plot for the data obtained in the three column
experiments seems to be convex (Fig. 7.7). The best fit to these experimental data was
obtained by the Langmuir sorption isotherm (Langmuir, 1918):

L-C

T+L-C (7.27)

q = dmaz *
assuming that the column saturation concentration for Mn?* (gq.) is about three
fold the maximum concentration used in the experiments (gmae = 18 meq- L~!). The
steepness constant (dimensionless) L for those conditions is 5.5. According to Eq. 7.27,

Man

=3 g’jr‘“f where q and C are Mn?* concentrations. It is clear that in the range
17

of the Mn?t concentrations used in the column, ¢ << gmaz and hence the " K, does

not vary much.
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FIGURE 7.7: Mn?* concentration in the solids (g,,,) versus its concentration in the

liquid (Cpp) for the three column experiments described in Fig. 7.6. The best fit

between the Langmuir sorption isotherm and the experimental data was obteined for
Qmaz=18 and L=>5.5.

7.6 Numerical model

The numerical model (Eq. 7.23) enables calculating the Mn?* breakthrough curve as
a function of all processes identified in this study (transport, adsorption and MnCOj,
precipitation). The schematic flow chart of the model, the computer code (MATLAB),
and the parameters used are presented Fig. 7.8, Appendix 15 and Table 7.2, respectively.
Simultaneous calculation of the Mn?* adsorbed on the solid (Eq. 7.17) was conducted

for completing the Mn mass-balance for the experimental column.

The time and distance increments (At and Az, respectively) used in the model were
chosen to be At = 0.005 h and Az = 0.5 cm, in order to minimize numerical dispersion.
The conditions for selecting these increments were: 1.v-At < Az and 2. D-At < (Ax)?.
The M" K, values used to model each of the experiments were those calculated by the

analytical model to best fit the data (Eq. 7.4 and Section 7.5). The adsorption and
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precipitation rate coefficients, k, and k,, were obtained by best fitting of the numerical

model runs with the experimental results.

Input variables (Cin, v, D, ALK, pH), and constants
(Ksp_rho KZ)'

Determining distance and time step sizas, At).

!

Estimating coefficients ("K, k,, k)

!

Setting initial and boundary conditions:

initial condition- fort=0,x>0: Cx,t=0;

boundary conditions - forx =0: Cx,t=Cin;
fort>0: CX,1,t=Cx, 1.

!

Loop 1 —time incrementg\{=0.005 h)
from t =0 to 800 h

|

Loop 2 — distance incrementsx=0.5 cm)
from x =-0.25 to 20.25 cm

|

If CX,t S Crho_sat
Cx,t=f (advection + dispersion + adsorption)

|

If CX1t > Cl'ho_sat
Cx,t=f (advection + dispersion + adsorption + pritaijon)

|

End

!

End

!

Presenting the output data

Ficure 7.8: Flow diagram of the numerical model progress.
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The initial and boundary conditions for t and x used for solving the numerical model

were:

1. CY=0fort=0atany z fromr=1-Aztox = (N +1)-Ax.
2. C{=Ct for x =0 at any t.

3. Clyy1 = Ch =Clyy for x = (N 41)- Az at any t.

where, t and x notations are similar to those in Eq. 7.23; N is the number of cells (each of
length = Az) in the experimental columns. The model includes two additional virtual
cells to facilitate the calculations, one before the entrance to the column, at x = 0,
representing the solution that enters the column (the inflow solution with concentration
C! ) and the second after the exit of the column, at z = (N + 1) - Az, representing the

solution at the column outlet (the outflow solution with concentration C? ;).

The numerical model runs (Figs 7.9, 7.10) show that the transport (advection and dis-
persion) and adsorption terms control mainly the shape and retardation of Mn?* break-
through (Fig. 7.9). The numerical model reproduces very well the experimental break-
through curves for the different inflow concentrations (Fig. 7.10). The higher the inflow
concentration is, the earlier the appearance of Mn?t at the outflow and the sharper the

rise of the breakthrough curve (Figs. 7.10, 7.11).

In order to obtain steady state outflow concentrations of Mn?t that are lower than the
inflow concentrations (as observed in experiments with high Mn?* inflow concentrations)
a MnCOj, precipitation term is required (Fig. 7.9). In the numerical model simulations a
Kgp—rho value of 2.24 - 10~ (Lide, 1991) was used. The published K sp—rho values range
over three orders of magnitude, from 3.09 - 10713 (Jensen et al., 2002) to 3.39 - 10~1°
(McBeath et al., 1998). When the highest value is used in the model, the solution
does not reach saturation with respect to rhodochrosite whereas using the lowest value

requires decreasing the precipitation rate coefficient (Fig. 7.12).

The travel time of the Mn?* front (represented by the number of pore volumes to reach
the breakthrough inflection point, Fig. 7.10) indicates that the retardation factor is
negatively correlated with the Mn?* inflow concentration. The higher the Mn?* inflow
concentration is, the earlier appears the Mn?* front. This phenomenon results from

the observed decrease in M K with increasing Mn?* inflow concentrations (the convex
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shape of the Mn sorption isotherm, see section 7.5.1 above). As described in Chapter
5 above (see also Appelo and Postma, 1996), the retardation factor is defined by the
ratio between the water flow velocity and the velocity of the Mn?*, which is a function

of M"[{; according to the equation:

R=—"— =14MK, (7.28)
UMn2+

The expression (1 + K d) for the retardation factor follows directly from Eq. 7.3 above.
When the water flow velocity in the experiments was kept constant, the retardation
factor equaled the ratio between the travel time of the Mn?t breakthrough inflection
point and the travel time of any conservative parameter (e.g. Cl7) that is affected
only by transport. The appropriate retardation factors for the high, moderate and low
Mn?* concentration experiments were 65, 76 and 94, respectively (Figs. 7.9, 7.10).
As mentioned above, this provides additional evidence to the convex shape of the Mn

adsorption isotherm.
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Transport+Adsorption & Observations

F1GURE 7.9: The numerical model run for the breakthrough curve of EXP 4, the ’high

Mn?* concentration experiment’ (red diamonds). The different lines show the curve

resulting from transport only (pink); transport and adsorption (blue); and the complete
model including transport, adsorption, and MnCO, precipitation (red).

The fine tuning of the model to the experimental results was made by adjusting the
rate coefficients of Mn?t adsorption and MnCO, precipitation (k, and k,, respectively,

see Eq. 7.23 and Table 7.2). Best fit with the experimental data was obtained for
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FIGURE 7.10: Experimental points and numerical model breakthrough curves of
Mn?* for different inflow concentrations.

10 < k, <200 h~! (Fig. 7.13), while for k, = 1 h~! there is clearly no fit. For k, >
250h~! the model ’exploded’ and yielded negative Mn?* values. The high adsorption rate
coefficient (200 h=1) provided the best fit for the 'moderate and high Mn?* concentration
experiments’ (Figs. 7.13B, 7.13C) and the low k, (10 h™!) fitted best the results of the
‘low Mn?* concentration experiment’ (Fig. 7.13A). The apparent dependence of k, on
Mn?* concentration may indicate that the rate law for Mn adsorption is pseudo-linear.
It should be noted that the value of 200 h™! is the highest the model can run with
before it crashes. It is therefore possible that the adsorption rate coefficient of 200
h~! is in fact an underestimate and that the 'moderate and high Mn?*t concentration

experiments’ have different and higher rate coeflicients.

The best fit to the experimental data yielded a MnCO, precipitation rate coefficient (k)
of 0.03 — 0.05 h™!, which is at least 3 orders of magnitude lower than the adsorption
rate coefficient. This indicates that MnCO; precipitation rate is much slower than the

Mn?* adsorption rate.
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FIGURE 7.11: Experimental points and numerical model breakthrough curves of the
Mn?2* concentration fractions for the different inflow concentrations.
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FIGURE 7.12: Numerical model runs for the breakthrough curve of EXP 2 using dif-
ferent values of rhodochrosite solubility product (Kgp—rho)-
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FIGURE 7.13: Best fit of the adsorption coefficient rate to the experimental break-
through curve of: (A) the low Mn?* concentration experiment’ (EXP 3); (B) the
'moderate Mn?T concentration experiment’ (EXP 2); and (C) the *high Mn?* concen-

tration experiment’ (EXP 4).
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7.7 The potential of the Shafdan aquifer rocks to adsorb

manganese

As discussed in section 6.6, the Mn?* adsorption capacity (MAC) of the sandy sedi-
ment used in the simulation experiments was much higher (probably by a factor of 10)
than the MAC of the Shafdan aquifer calcareous sandstones. In spite of the different
characteristics, the results of the column simulation experiments were used to constrain

potential MAC of the Shafdan’s Yavne-2 SAT system.

Applying the Mn sorption isotherm (Fig. 7.7, and section 7.5.1) as described by Eq.
7.27, the Mn adsorbed concentrations (q), as a function of the Mn?* dissolved in the

aquifer (C) is expressed by the equation:

q (meq - L_l) B (7.29)

- 0.18
1+ C(meq-L—1)

The total amount of Mn(II) that may adsorb onto Yavne-2 aquifer sediments (Mnqds_aqu)
when in equilibrium with dissolved Mn?* (Eq. 7.29) can be calculated using the follow-

ing equation:

— 1 54.94
Mnggs_aqu (Ton) = q (eq : m_?’) Vaquifer (m3) — (gMn . eq_l)‘10_6 (Ton : g_l)

10 2
(7.30)
where the coefficient 1/10 is the MAC of aquifer sediments to MAC of experimental
column sediments ratio (section 6.6); and the volume of water in the aquifer is calculated
by: Vaqm- fer = T+ r2. 7 ¢, where, r - radius of Yavne-2 SAT system containing the

adsorbed Mn(II) (500 m); Z - thickness of the aquifer (60 m); and e - porosity (0.4).

The Mnggs_qqu versus aquifer’s Cyp, plot (Fig. 7.14) shows that the amounts of Mn(II)
adsorbed in the Yavne-2 field are between 90 and 260 Ton (given Mn?* concentrations
in the groundwater between 0.02 and 0.07 meq - L=!). This value is much greater than
the total amount of Mn?t that was recharged into Yavne-2 field or the total amount of

Mn recovered by the production wells (see Fig. 3, Chapter 5).
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FIGURE 7.14: The amount of Mn(II) that may be adsorbed onto the aquifer sediments

versus its concentration in groundwater (C,,), calculated by Eqs.7.29 and 7.30. The

range between the dashed lines represents the expected amounts of adsorbed Mn(II)
according to the observed dissolved Mn?t concentrations within the aquifer.

7.8 Summary

The Mn?* adsorption experiments conducted in this study were designed to follow the
Mn?* breakthrough behavior under suboxic conditions and different Mn?* inflow con-
centrations. Analytical and numerical models that were fitted to the experimental data
enabled identification and quantification of the processes controlling Mn mobilization in

the columns and within the aquifer. The main conclusions are summarized below.

e Mn is retarded much longer than all major cations during the flow of water through
sandy sediments under suboxic conditions. The first appearance of Mn?*t in the

outflow solutions of the column occurred after water passage of 40-50 pore volumes.

e The Mn?* outflow concentration stabilized on values similar or lower than that of

the inflow solutions, depending on the Mn?* inflow concentration.
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e The higher the inflow Mn?* concentration, the earlier the appearance of Mn?* at

the outflow solution and the sharper the rise of the breakthrough curve.

e The main process controlling the behavior of the Mn?T breakthrough curves is

adsorption of Mn(II) onto the aquifer sediments.

e The Mn sorption isotherm in the examined range of Mn?* concentrations is con-
vex and not linear, i.e. the higher the Mn?t inflow concentration the lower the
Mn ¢, (calculated as q/C). The data were best described by the Langmuir sorption

isotherm model: ¢ (meq . L‘l) = 18- where 18-meq- L~ is the saturation

1+5 5 C ’
concentration of the adsorbed Mn(II).

e Apparently, MnCO, (rhodochrosite) precipitation occurred in the high and moder-
ate Mn2* concentration experiments. In this case the Mn?T outflow concentrations
stabilized on values lower than those of the inflow solutions. By that time, out
of the total Mn removed by the column, 1/5 was precipitated as MnCO4 and 4/5

was removed by adsorption.

e The MnCOj precipitation rate coefficient (k, = 0.04 h™') is lower by at least 3
orders of magnitude than the adsorption rate coefficient (k, between 10 h—! and
200 h=!). Thus, the kinetics of MnCOj precipitation is much slower than that of

the adsorption, indicating that adsorption controls Mn?* retardation.

e The total amount of Mn(II) adsorbed onto the Yavne-2 aquifer sediments is esti-
mated to range between 90 and 260 Ton. This suggests that the total amount of the
adsorbed Mn(II) is much larger than the total Mn?* recharged in the infiltration

basin or the total Mn recovered by the production wells.



Chapter 8

Summary and Conclusions

The present study deals with the aquatic geochemistry of Mn during the interaction
of groundwater enriched in organic matter with calcareous-sandstone rocks. The site
selected for the study was the Yavne-2 infiltration system, which is part of the larger
soil aquifer treatment (SAT) system of the Shafdan plant. In the Shafdan SAT system,
the calcareous-sandstone aquifer is recharged with treated effluents enriched in dissolved
organic matter. The groundwater is being pumped for reuse in irrigation few hundred
meters down stream of the Yavne-2 infiltration basin. The water rock interactions along
the flow path of the groundwater are discussed and modeled, focusing on the processes
controlling the Mn mobilization. The thesis is summarized with a conceptual model

summarizing the geochemical evolution and Mn mobilization (Fig. 8.1).

Cation exchange and CaCOj4 dissolution are the main processes modifying the chemical
composition of the effluents during their flow in the aquifer. This is deduced from the
chemical composition of water collected in wells drilled into the aquifer and laboratory
simulations with columns packed with Shafdan sediments. The main phenomena occur-
ring during the initial stage of recharge with efluents are massive adsorption of Nat, K+
and Mg?* and desorption of Ca?*. These continue until equilibrium and steady state
are achieved. Slight changes in the composition of the recharged effluents (RE) result
in additional cation exchange to reestablish equilibrium between the fluid and rock. For
example, decrease in the Na™ concentration in the RE of the Shafdan SAT system lead
to Nat desorption from the sediments, accompanied by adsorption of Mg?* and possibly

also Ca2t.

141
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Ca’t concentrations increase by 1-2 meq-L™! as compared to that in the RE in all
production wells of Yavne-2 SAT system, as well as in the outflow solutions of the
columns, reaching calcite saturation. This is due to CaCO4 dissolution by the RE which

is undersaturated with respect to calcite.

The pretreated effluents that recharge the aquifer are enriched in organic matter and
ammonium, which oxidize almost completely (to CO, and nitrate) during the effluent in-
filtration through the vadose zone. The oxidation of organic matter and the nitrification
processes consume the dissolved oxygen, causing suboxic conditions that facilitate reduc-
tion of sedimentary Mn-oxide and its mobilization as Mn?* in the groundwater. Indeed,
high Mn concentrations were found only in 100% wells where the DO concentration is

< 50 pmol-L~1.

The Mn budget for the period from the onset of the Yavne-2 SAT system operation until
2004 indicates that during this period the aquifer rocks lost at least 8 Ton of Mn due
to reduction of sedimentary Mn-oxides and Mn?* mobilization with the groundwater.
This loss is reflected in the low Mn (and Mn-oxides) content in the calcareous sandstones
of the aquifer, below the water table, as compared to the concentrations in similar but
pristine sediments that were not exposed to leaching by RE. On the other hand, the
concentration of Mn in the infiltrating effluents within the vadose zone (0-9 m) and in
the groundwater below the infiltration basin is low. These observations strongly suggest
that most of the Mn is mobilized within the saturated zone of the aquifer and not in the

vadose zone.

The recharge regime in the Yavne-2 infiltration basin and the RE composition remained
constant since the onset of the basin operation. Therefore, and due to the rapid kinetics
of Mn reduction, it is concluded that Mn reduction began soon after the onset of the
Yavne-2 SAT operation (once the effluents replaced the freshwater in the aquifer) and
that this process has been continuing at a constant rate as of that time. Yet, high Mn
concentrations first appeared in the production wells around the infiltration basin only
in the year 2000, about 12 years after the beginning of operation. The Mn retardation
is attributed to massive adsorption of reduced Mn(II) onto the aquifer sediments, as

simulated also in the columns.

The Mn sorption isotherm obtained from the column simulation runs, suggests that the

total amount of Mn(II) adsorbed onto the Yavne-2 aquifer sediments ranges between 90
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and 260 Ton. The experiments also verified that Mn retardation is much greater than
that of all major cations during the flow of water through the sandy sediments under
suboxic conditions. The Mn?* breakthrough behavior is controlled by the adsorption
capacity of Mn(II). Therefore, the higher the Mn?* concentration in the inflow solu-
tion, the earlier it appears in the outflow solutions and the sharper is the rise of its

breakthrough curve.

MnCO, ("rhodochrosite”) precipitation sets the upper limit on Mn?* concentration in
the groundwater at high Mn?* concentrations (> 700 ug-L~! for ALK=0.005 eq-L~!
and pH=6.8). A transport-reaction numerical model formulated in the present study
suggests that the kinetics of MnCO, precipitation is much slower than that of the ad-
sorption, indicating that the adsorption controls the Mn?* retardation. The MnCO;,
precipitation rate coefficient (k,=0.04 h=!) is lower by at least 3 orders of magnitude

than the adsorption rate coefficient (k, between 10 h™1 and 200 h™1).

In summary, a front of high Mn?* concentration advances in the direction of the ground-
water flow within the calcareous-sandstone aquifer containing 100% effluents (Fig. 8.1A,
B). It is expected that the Mn front will eventually reach the hydrologic trough around
the basin, which contains a mixture of effluents and oxidized fresh groundwater. Mixing
between these water types will result in oxidation and precipitation of Mn-oxides in
the aquifer (Fig. 8.1C). Thus, groundwater pumped in wells located within the trough,
which at present contains low levels of Mn, will remain so also in the future. Accord-
ingly, the advance of the Mn front is expected to stop when it reaches the hydrologic
trough. The mobilization of the Mn in the aquifer is expected to stop when all the labile

sedimentary Mn content within the region of the 100% effluents will be consumed.
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Observation well A
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FIGURE 8.1: A three-stage (A,B,C) conceptual model describing the geochemical evo-
lution and Mn mobilization along an aquifer recharged by effluents, e.g., the Yavne-2
SAT system of the Shafdan plant. The black arrows mark the water flow direction
and the red arrows mark the dissolved Mn?* transport. A - Suboxic conditions are
established in the aquifer below the basin due to organic matter oxidation and nitrifi-
cation in the vadose zone, causing reductive dissolution of Mn-oxides accompanied by
immediate Mn(II) adsorption. Water-rock interactions including cation exchange and
CaCOj4 dissolution alter the chemical composition of the efluents in the aquifer, until
steady state is achieved. B - Mn adsorption sites become saturated and as a result the
dissolved Mn2?* concentration increases and a high Mn?* concentration front begins to
advance in the direction of the groundwater flow in the aquifer area containing 100%
effluents. Saturation with respect of MnCOyj is attained. C - The high Mn** concen-
tration front reaches the oxygenated mixing zone between the effluents and the fresh
groundwater, where in addition to adsorption, the Mn?T is oxidized and re-precipitates
as Mn-oxides.
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