Abstract

10Be $(t_{1/2}=1.39 \text{ Ma})$ concentrations in sediments of lakes with large catchment areas depend not only on the production rate but also on climate related transport and erosion processes. In this study we evaluated the potential use of the annually laminated and accurately dated (by U-Th) lacustrine sediments of the Lisan Formation (deposited from Lake Lisan, the late Pleistocene precursor of the Dead Sea; Fig 1) as a high resolution production rate archive of atmospheric 10Be. Lisan sediments comprise of annual pairs of primary aragonite and silty detritus material (Fig 2) that originated from desert dust blown to the lake’s vicinity and washed with desert floods (Fig 3). 10Be is mainly contained within the detritus laminae, while the aragonite laminae store information on the geochemical limnological history of the lake. The relative contributions of production and climate to the overall 10Be signal were evaluated by measuring the 10Be and chemical compositions of modern dust and the detritus laminae in intervals representing lake level changes and intervals representing rapid change in the 10Be production (i.e., the Laschamp excursion).

Our results demonstrate that during periods in which the 10Be production rate varies moderately the recycled 10Be component is significant. During these periods the 10Be concentration correlates with the combined Al and Fe content (R^2 = 0.88; Fig 4) and lake level variations (Fig 5). Yet, during the Laschamp excursion interval (~ 41–40 ka BP), 10Be concentrations show a ~two fold increase (2.98±0.12 – 5.30±0.12 x$^{10^6}$ atoms·gr$^{-1}$) that cannot be attributed to the mentioned correlations and possibly reflect the enhanced atmospheric production.

Radiocarbon measurements in primary aragonite laminae of the Lisan formation showed a significant 14C anomaly (up to ~900‰) across the Laschamp interval. We will combine 10Be and radiocarbon data to deduce the non production fraction of the radiocarbon anomaly.

Figure 3: Location map showing the Dead Sea, its drainage basin, the maximum extent of the late Pleistocene Lake Lisan.

Results and discussion

![Image](https://example.com/image)

Figure 4: 10Be vs. silicate (A) and carbonate (B) mineral proxies. 10Be shows a good linear correlation with siliate mineral proxies. The samples that lie out of the correlation (marked in red) correlate in age with geomagnetic excursions (Fig 5).

![Image](https://example.com/image)

Figure 5: 10Be vs. elevation (B) and age (C). The lithology of the sampled section MS1 (A) and Lake Lisan lake level curve (D; modified after Bartov et al 2003) are shown for comparison. The overall 10Be concentration correlates with lake level. However, during periods of rapid change in the 10Be production rate (i.e. geomagnetic excursions) the 10Be concentration shows a ~two fold increase (2.98±0.12 – 5.30±0.12 x$^{10^6}$ atoms·gr$^{-1}$)

Summary

This study evaluated whether 10Be variations in the laminated detritus sediments of the last glacial Lake Lisan reflect production or climate. The main findings of this study are:

1. During periods of moderate 10Be production rate variations (i.e. no paleomagnetic excursion) the 10Be content in Lake Lisan detrital sediments is determined by the amount of 10Be adsorbed from flood waters. Therefore, the Lisan formation can not be used to trace small fluctuations in the 10Be production rate.

2. 10Be production rate variations induced by large geomagnetic excursions are detectable in Lake Lisan sediments. This implies that 10Be can potentially be used as a paleomagnetic isochron of continental archives.

3. 10Be and radiocarbon data will be combined to deduce the non production fraction of the radiocarbon anomaly found in the Lisan formation during the Laschamp excursion.